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1 Abstract Machines

Abstract machines are a theoretical model of a calculator, typically consisting of a set of states,
including initial and final states, and a set of machine operations, which manipulate the state
of the machine. They are an important concept in theoretical computer science, for example to
specify the operational semantics of a programming language (as we did we MinHs and TinyImp),
or computational and complexity theory. Probably one of the best known examples of an abstract
machine is the Turing machine, which was designed by Alan Turing in 1936 as a means to tackle
the Entscheidungsproblem (Decision Problem).

Abstract Machines are closely related to Virtual Machines, which are basically Abstract Ma-
chines with an implementation. Such virtual machines can be used to achieve portability of high-
level programming languages (like the Java Virtual Machine, or the Common Language Framework
for the .NET framework) or complete operating systems.

In this course, we use abstract machines as a means to study the operational semantics of
programming languages. We started with two simple machines, which have a very small set of
operations and states. We will gradually add more details to the machine and bring it closer
to a machine we could actually use as a basis for an implementation. We do this in order to
make languages easier to reason about - we use the higher level specification (for example, big
step semantics) for reasoning about higher level properties such as safety, and use the lower level
specification for reasoning about machine characteristics such as performance.

Technically, you have already seen two examples of abstract machines - in the structural oper-
ational semantics of a language (the “small step” semantics), and in the evaluation (“big step”)
semantics. While these technically constitute abstract machines, they are perhaps too abstract
for our needs.

We seek to specify the evaluation of a language in a more “low-level” way. Should we start from
the evaluation semantics, or the small-step semantics? Notice that the evaluation semantics do
not even specify the order in which terms should be evaluated. Seeing as nondeterminism doesn’t
exist in real computers, we must specify such an order. Hence we could say that the small-step
semantics are “lower-level” than the big-step. Therefore, it makes sense for us to start with the
small-step semantics. We call the small-step semantics of MinHS the M Machine.

2 The C Machine

One thing still left rather abstract in the M Machine is control flow, specifically, the notion of a
runtime stack. When we want to evaluate a term, say Plus (Plus (Num 2) (Num 3)) (Num 4), the M
Machine rules tell us that we must first evaluate the inner Plus (Num 2) (Num 3) and then return
it to the original expression. This is akin to pushing the greater expression context onto a stack,
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evaluating the inner expression and then popping the context off the stack again, returning the
evaluated expression to it.

We will introduce a new machine, the C Machine, that makes this stack explicit. In order to
do this, we will need to formalise it, but we will get an informal intuition for it first.

2.1 C Machine States

In the M Machine, the state of the machine merely consists of the current expression to be
evaluated - the notion of the stack is hidden in the deduction tree of the inference rules. In our C'
Machine, however, our state consists of three parts:

e The current expression to be evaluated
e A stack of expression frames

e A single binary flag that denotes whether the machine is currently evaluating an expression,
or returning a value after evaluating.

To start with, we will introduce some new symbols to represent the stack. Formally:

s Stack x Frame
o Stack x> s Stack

So, o represents the empty stack, and z > s is a stack with a frame x on the top. But what is a
frame? We define a frame as an expression with a hole in it, denoted by O. For example:

Plus O (Num 3)

Is a Plus expression awaiting evaluation of its first argument. In this way, our frames are suspended
computations, which are awaiting further information in order to be evaluated.

2.1.1 A sketch of a C Machine

Now that we have the stack, we can have a shot at representing the machine states. Suppose we
want to evaluate our earlier example with the C' Machine:

Plus (Plus (Num 2) (Num 3)) Num 4

To begin, we need to come up with an initial state for our expression. So, when we start, we have
the empty stack (o), and the machine starts with the flag set to evaluate the expression (denoted
by >).

o > Plus (Plus (Num 2) (Num 3)) (Num 4)

The rules in the M Machine state that in order to evaluate a Plus expression, first the first
subexpression should be evaluated, then the second. Hence, in this case, our C' Machine will
mirror the behaviour of the M Machine; that is, it should evaluate Plus (Num 2) (Num 3) first. To
achieve this, a stack frame is pushed for Plus, with a O in place of the first subexpression, and
the machine is set to evaluate the expression we just replaced:

Plus O (Num4)>o > Plus (Num 2) (Num 3)
Now the machine has to evaluate another plus, so another stack frame is pushed:
Plus O (Num 3)>Plus O (Num4)>o > Num2

Now the machine simply has to evaluate a numeric literal. Seeing as no further evaluation need
take place (the value associated with the expression can be inferred without further work), the
machine switches to return (denoted by <) the value back into the awaiting stack frame:

Plus O (Num 3)>Plus O (Num4)po < 2



Having evaluated the first argument, the machine again suspends computation of the plus expres-
sion in order to evaluate the second subexpression, which proceeds similarly:

Plus 2 O>Plus O (Num4)>o > Num3
Plus 2 O>Plus O (Num4)>o < 3

As the machine is returning the last value necessary for the plus frame, it pops the frame off the
stack, performs a primitive addition operation, and returns the result 5:

Plus O Num4po < 5
The rest of the evaluation proceeds predictably:

Plus 5 0po > Num4
Plus 50ro < 4
o < 9

2.2 Formalising the C' Machine

Now that we have an informal idea of what our C' Machine looks like, we can begin to formalise
the machine. An abstract machine in general consists of:

e A set of states Y.

e A set of initial states I C X.

e A set of final states F' C 3.

e A state transition function, — : X — X.

You’ve seen these before—they’re also called small-step semantics.
We can specify formally each of these components. The set of states ¥ is specified as follows:

s Stack e Expr s Stack v Value
s—ec X s<veXY

That is, ¥ is comprised of all evaluating states and all returning states.
The set of initial states I is defined as the set of all evaluating states with an empty stack:

e Fxpr
o=ecl

The final states F' are defined as all returning states with an empty stack:

v Value
o<veEF

Now we must define the state transition relation for our C' Machine, ..

2.2.1 Literals

To begin, we will start on the easy part - Evaluating numeric and boolean literals:

s>Numv—.s <0 s> Bool vi—=.5<v

So, the machine simply returns the corresponding values unchanged - no further computation is
necessary. For function values, we must introduce some new notation, but the principle is the
same as for numbers and booleans:

s>Fun (fx.---)—=es < (fx--)



2.2.2 Primitive Operations

Now we can specify more complicated rules, such as that for Plus. When faced with an unevaluated
Plus expression, the machine first evaluates the first subexpression, and pushes the rest on the
stack:

s> Plus e; eg—.Plus O ey >s > e;

Once that subexpression is evaluated, the machine will begin evaluating the second subexpression:

Plus O es>s <v—=.,Plusv O>s > ey

Finally, when both subexpressions are evaluated, the machine returns the resultant sum, computed
via a primitive operation, +:

Plus v; OB § < Vg ¢ § < (v1+v3)

The definitions for Times, Greater, Equal, Not, And etc. are very similar, just making use of
different primitive machine operations.

2.2.3 Conditionals

Now, what about if? Recall that in the M Machine, the machine first evaluates the condition to
some result, and, depending on the result, would evaluate just one branch of the conditional.

Similarly, when faced with an unevaluated If expression, the C' Machine evalutes the condition
first:

s=Ifcte—.If Oters>c

If the result is True, the first branch is evaluated, otherwise the second:

If O te>bs<Truer—,.s>1 If 0O te>bs <Falser—,.s5>¢€

2.2.4 Function Application

Finally, we must deal with function application. Recall that in the M Machine, first the function
expression was evaluated, then the argument to the function, then finally the body of the function,
substituting in the value of the argument. We employ a similar strategy here.

First evaluate the function value:

s~ Apply f a . Apply O abs > f

Then, evaluate the argument:

Apply O ab>s < {(f.x.e) — Apply {(f.x.e)) O>s > a

Then finally evaluate the function body, substituting the value for the argument, and the function
name in case the function is recursive:

Apply (f.x.e) O>s < vy ¢ s> e[f = (Fun f.x. e),x = v,

2.3 Example

Here we have a simple function that determines if the provided argument is even, applied to the
argument 3. To make things shorter, we rename the Num abstract syntax expression to simply N,
Minus to Sub, and Apply to Ap.



o > Ap (Fun f.z.(If (LEqz (NO0)) (Eqz (NO)) (Ap f (Sub z (N 2))))) (N 3)
e Ap O (N3)>o > Fun fax.(If (LEqz (NO0)) (Eq z (NO0)) (Ap f (Sub z (N 2))))
e ap O (N3)po < ((fa.(If (LEqx (N 0)) (Eq (N 0)) (Ap f (Subx (N 2)))))
e Ap {(---) Opo = N3
e Ap (---) Opo < 3
e o > 1If (LEq (N3)(NO)) (Eq(N3) (NO)) (Ap (Fun ---) (Sub (N 3) (N 2)))
e If O ---po > LEq(N3)(NO)
e LEq O (NO)>If --->o > N3
e LEq O (NO)pIf ---po < 3
e LEq30pIf ---po > NO
—e LEq 3 OpIf ---po < 0
e If O --- (Ap ---)>po < False
e o > (Ap (Fun ---) (Sub (N 3) (N 2)))
e Ap O (Sub ---)po > (Fun ---)
e Ap O (Sub -+ )po < ()
e Ap {(---) Opo > Sub (N3)(N2)
e Sub O (N2)>pAp --->o > N3
e Sub O (N2)pAp --->po < 3
e Sub3 O>Ap --->o > N2
e Sub3 O>Ap --->o0 < 2
e Ap (---) Opo < 1
e o > 1If (LEq(N1)(NO)) (Eq(N1) (NO)) (Ap (Fun ---) (Sub (N 1) (N 2)))
e If O ---po > LEqQ(N1)(NO)
e LEq O (NO)pIf ---po > N1
e LEq O (NO)>If ---po < 1
—e LEq1 OpIf ---po > NO
e LEq1 dpIf ---po < O
e If O --- (Ap ---)>po < False
e o > (Ap (Fun ---) (Sub (N 1) (N 2)))
e Ap O (Sub ---)po > (Fun ---)
e Ap O (Sub ---)po < {---)
e Ap (---) Opo > Sub(N1)(N2)
e Sub O (N2)pAp --->po > N1
e Sub O (N2)pAp ---po < 1
e Subl1 O>Ap >0 > N2
e Subl Od>Ap --->o0 < 2
e Ap (---) Opo =< -1
e o > 1If (LEq (N-1) (NO)) (Eq (N-1) (NO)) (Ap (Fun ---) (Sub (N-1) (N 2)))
e If O ---bo > LEq(N-1) (NO)
e LEq O (NO)>If ---po > N-1
e LEq O (NO)>If ---po < -1
e LEq-1O>If --->o > NO
e LEq-1OpIf --->o < 0
—c. If O (Eq(N-1) (NO)) --->o < True
e o > Eq((N-1) (NO)
e EQ OMNO)po > N-1
e EQ ONO)po < -1
e Eq-10po > NO
e Eq-10Opo < 0
e o < False

Wow, that long just to compute if three is even! No wonder we prefer evaluation semantics!
Computers, however, certainly would prefer the C' Machine - note that every state transition for
the C' Machine is an axiom. This means we can implement it as a single tight while loop that
moves from state to state until it reaches a state in F.

Note: In an exam situation, you may be asked to present a derivation like the above. It is not
necessary to write out every single step, just those steps you believe to be most important.



3 The E Machine

Now that we’ve made control flow more explicit, it becomes easier to see how we would implement
the language efficiently on a real computer.
Let’s take a look at our primitive machine operations so far:

e The Numeric Operators - +, * etc.
e Comparison Operators - ==, < etc.
e Logical Operators - &&, ||, !

e Substitution - e[z := y]

The great thing about most of these is that they are often native machine instructions in most
computers, so they can be implemented very efficiently.

The one operation that cannot be implemented very efficiently is substitution. Substitution is
of complexity O(n) in the size of the expression—it would be very difficult to implement it as an
efficient machine instruction!

So, we are going to extend our machine once more, to include environments in the machine
state. We will call our new machine the E Machine. This way, we make the machine look up
variables in the environment rather than rely on substitution.

We extend our states as follows:

s Stack T Env e Expr s Stack T Env e Expr
s T>=eeX sl T<eeX

Note this is exactly the same as the C' Machine, except with environments added. How do we

denote environments?
I' Env z Ident v Value

e Fnu xz=uv,I' Env

So, e is the empty environment, and we add new bindings to the environment with the notation
T = .

Now we need to add some rules for dealing with variables. In the C Machine, a variable
occurring by itself was a stuck state - the only way for such a situation to arise is if the variable
is free, which makes it an invalid expression. In the M Machine, variables are to be expected - if
they occur in the environment:

sle=v;T=z—=gs|lz=v;T <0

Now, what happens when we call a function? Naturally, we’d want to introduce new bindings to
our environment, for the argument and the recursive name. When the function returns, however,
we want to remove these bindings, as they are no longer in scope. The way we achieve this is
somewhat unusual. We extend our stack to be able to include environments as well as frames:

s Stack x Frame s Stack T Env
o Stack x> s Stack T'> s Stack

Then, when we apply a function, we add the bindings, and push the old environment to the stack:

Apply (fx.e) Ops| ' <vpTos|e=vf={(fxze);T >e

When the function returns, we restore the environment from the stack, which has the effect of
removing the unwanted bindings:

I'bs|A<v—gs|T'<w



All other state transition rules are identical to the C' Machine, preserving the environment
across the transition.

The initial and final states are also unchanged, except that they now include the empty envi-
ronment:

e Expr v Value
ole~ecel ole<veF

3.1 Closures
3.1.1 The Problem

Suppose we had a function that depended on variables that are free inside the function body,
but in scope where the function is defined. A common example is partial application, or nested
functions - like in the following (slightly abridged) example:

o|e App (App (Fun f.x.(Fun g.y.x)) 3) 4
—E App O 4vo|e = App (Fun f.x.(Fun g.y.7)) 3
) App O 3> App O 4>0|e > Fun f..(Fun g.y.x)
—g App (f.z.(Fun g.y.x)) O>App O 4>o|e < 3
—E e>App O 4ol =3;f=( --);® > Fungy.x
—E e>App O 4po|ax=3;f=({-);e < {(gy.z)
—E App O 4po|e < (g.y.z)
—E App {g.y.x) Obo|e < 4
—E evo|ly=4;9={(gyz);e = =

®

The problem with these situations is now apparent - we can’t evaluate x here, as x is not in our
environment! But, where the function g is defined, = s most certainly in scope. The problem here
is that the function value for g escaped the scope in which it was defined.

3.1.2 The Solution

To fix this problem, we must revise our definition of a function value. Instead of essentially being
an expression with some bound variables, we will instead make it a pair of the expression for the
body of the function, and the environment in which it is defined, i.e:

s|T" > Fun (fx.e) —g s|T' < (T, fx.e)

This pairing of a function body and an environment is called a closure.

When we apply a closure with an argument, it’s very similar to our rules before, except instead
of simply augmenting the current environment with the argument values and recursive name, we
first set the current environment to be contents of the closure:

App (A, fxe) O>s|T < v =g Tbs|la=uvf= (A, fae);A = e

With this environment capture in place, we can now evaluate the example above successfully:



O|.
App O 4poe
App O 3> App O 4>o|e

App (e, f.x.(Fun g.y.x))) O>App O 4o e
e>App O 4vo|z=3;f=();e
e>App O 4oz =3;f=(--);e

App O 4po|e

App (z =3; f;e gy.x) O>o|e
evoly=dg={(hr=3f=()e
evoly=4dg=(x=3f=( ~>|;'
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App (App (Fun f.x.(Fun g.y.z)) 3) 4
App (Fun f.x.(Fun g.y.z)) 3
Fun f.z.(Fun g.y.x)

3

Fun g.y.x

{(z =3;f;9,99.z)
{x=3;f;0,9y.1)
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